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A B S T R A C T   

Assessing the abundance of biological populations is a central technical challenge in ecology, whether funda
mental or applied. Although the question faced is simple, it is actually a complicated topic that has produced a 
vast array of methods. The first step is always sampling the geographical space, ideally by means of a randomized 
selection process. In that case, with a frequentist interpretation of probability, abundance can be estimated by 
taking into account randomization, or predicted conditionally on the sample at hand, by specifying a statistical 
model. This leads to a choice between so-called design-based estimation and model-based prediction. The goal of 
this methodological article is to contribute to the understanding of fundamental notions regarding these two 
statistical frameworks by the targeted audience, mainly quantitative ecologists. For this purpose, we illustrate the 
comparison between design-based estimation in the case of simple random sampling without replacement 
(SRSWOR) and model-based prediction. As an example, we model count data with a delta-lognormal distribution 
and rely on uniformly minimum-variance unbiased estimators (UMVUEs) for the prediction of abundance. We 
investigate the robustness of the predictor by contaminating the delta-lognormal distribution using actual count 
data. Data from a survey concerning wintering populations in France of two wader species, namely, northern 
lapwing (Vanellus vanellus) and European golden plover (Pluvialis apricaria) serve as illustrative examples. By 
means of Monte Carlo simulations, we highlight the lack of robustness of the predictor based on the delta- 
lognormal distributional model, in terms of both actual bias and precision. We organize the discussion around 
the illustrative examples in the context of the sampling design, the model and the data.   

1. Introduction 

The question of determining the abundance of individuals of a spe
cies at a given spatial scale remains central to many ecological studies 
and monitoring programs. Ecology is sometimes even defined as the 
study of the causes of variations in abundance in space and time (Krebs, 
2014). In particular, this is one of the definitions of ecology that is 
embodied by the ecological indicator field (Niemi and McDonald, 2004). 
From population dynamics to management decisions (exotic species 
regulation, rewilding, etc.), biological population size is the most basic 
— yet not necessarily the easiest — information to know. For example, 
the International Union for Conservation of Nature (IUCN) status of 
species is defined by the species’ abundance trends. Many management 
decisions, such as hunting bag limits or conservation actions, depend on 

IUCN status. Beyond species conservation, the rationale for biological 
monitoring rests on the fact that living organisms integrate the impact of 
many variables and that their abundance and other population param
eters can provide an indication of the overall health of the ecosystems of 
which they are a part (Spellerberg, 2005). Abundance — whether ab
solute or relative — is a key variable for finding indicator species (e.g., 
Dufrêne and Legendre, 1997) or designing indicators of environmental 
disturbance (e.g., Meire and Dereu, 1990; Trenkel and Rochet, 2003; 
Hiddink, 2005). 

While abundance assessment is a central question, it remains difficult 
to address in practice because there is no reliable and inexpensive way to 
determine the abundance of any species at any spatial scale. This is a 
particularly difficult challenge for large spatial scales (and even more so 
for species with high dispersal capacities). As it is impossible to count all 
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individuals, one must estimate (or predict) total abundance, with all the 
statistical uncertainty this implies. This results in an extensive literature 
devoted to the single issue of determining abundance over a bounded 
territory during a limited period of time. This is particularly the case in 
animal ecology, where abundance assessment is a central technical 
topic, leading to books (e.g., Norton-Griffiths, 1978; Seber, 1982; 
Buckland et al., 2001; Buckland et al., 2004; Rivoirard et al., 2000; 
Borchers et al., 2002) and reviews (e.g., Seber, 1986; Seber, 1992; 
Schwarz and Seber, 1999; Iijima, 2020) documenting perpetually 
evolving methods. 

In this methodological article, we address some fundamental con
cerns regarding the type of statistical framework that can be used by 
quantitative ecologists aiming to assess biological population size. Our 
article is not intended to be a review of abundance estimation methods 
or to offer novel insights for improving population size estimates or to 
discuss abundance-based ecological indicators. The purpose of this 
article is rather to help document the comparison between two ap
proaches (estimation and prediction) in the case of a finite population of 
spatial sampling units in the field of abundance assessment, to allow 
discussion of their strengths, limits and challenges in this context. 

Let us denote D , a spatial domain — considered as two-dimensional, 
not necessarily connex — and T , a time period concerned by the study 
at hand. Determining the abundance of a given species over D × T 

necessarily requires some form of spatial and temporal sampling 
because it is impossible to count organisms at all points of space, at any 
time. We put aside here the issue of temporal sampling by considering 
that counting is performed during a period of demographic stability (i.e., 
neither recruitment of adults nor significant mortality has occurred). We 
also consider that during this period, immigration and emigration 
movements in relation to the domain’s borders can be neglected. Thus, 
at the time of the survey, we consider that D contains an approximately 
closed biological population, both demographically and geographically. 

1.1. Finite population of spatial sampling units 

Spatial sampling can be performed by considering geographic space 
either as continuous or discretized. In this article, we adopt the second 
perspective by considering in particular that D is partitioned into 
spatial sampling units, i.e., we define a finite population U of 
nonoverlapping subdomains ui whose set completely covers D (Fig. 1). 

We consider that the spatial sampling units ui are unambiguously 
identifiable by integer labels (1, 2,…, i,…,N). The list of units (labels) 
constitutes a sampling frame (Fig. 2). As it will not be necessary here to 
refer to the physical nature of the units, to simplify the notation, we 
directly use the indices (1,2,…, i,…,N) to designate the units, in lieu of 

(u1,u2,…,ui…,uN). 

1.2. Assessing the abundance of biological populations 

Abundance is determined via two steps: (i) sampling the population 
of spatial sampling units U , which leads to a sample s of size n; and (ii) 
counting the individuals in the units of s. The second step can also be 
viewed formally as a sampling step due to imperfect detection (e.g., 
White, 2005; Kellner and Swihart, 2014). 

In step (i), one has the opportunity to control the sampling process 
applied to U , in particular using probability sampling. There are many 
possibilities in this area, including stratified sampling, multistage sam
pling, multiphase sampling and spatially balanced sampling; we refer 
the reader, for example, to Hankin et al. (2019) and Tillé (2020). These 
multiple possibilities can be combined in more or less complex ways. 

For step (ii), the sampling process that leads to the number of in
dividuals counted (the variable of interest, which we denote as y) is not 
under control. At best, inclusion probabilities of individuals in the set of 
the counted individuals can only be estimated or modeled, often in a 
global manner (i.e., on average for all individuals). 

In this article, we are interested in only the first step, which concerns 
a finite population of spatial units, considering that probability sampling 
can be implemented. 

After counting the individuals in each unit of the spatial sample, we 
obtain a dataset 

{
yi, i ∈ s

}
from which we try to assess a quantity θ 

defined on the statistical population U ; we speak here of the mean or 
total number of individuals in D . The statistical assessment of θ requires 
that a probabilistic link be made between the units of s and those 
belonging to the unknown part of the sampled population r = U − s (r 
stands for remaining). This link can be made in several ways, which 
potentially offers several theoretical frameworks. In this article, we 
endeavor to contribute to the comparison between two frequentist 
paradigms known as design-based and model-based approaches. For the 
notations used in this article, the reader is referred to Appendix A. 

2. Design-based versus model-based dichotomy 

The contrast between design-based and model-based paradigms 
appeared explicitly in the survey sampling literature at the end of the 
1970s with the article by Särndal (1978), then in the environmental 
sciences during the 1990s with, in particular De Gruijter and Ter Braak 
(1990) in the Earth sciences, Brus and De Gruijter (1993) in soil sciences, 
Gregoire (1998) in forestry, and more modestly in applied ecology with 

Fig. 1. Example of a (non connex) spatial domain D partitioned into a finite set 
U of subdomains ui with area |ui| such that 

∑
|ui| = |D |. 

Fig. 2. Example of a finite population U with N = 42 spatial sampling units 
partitioning a domain. The units are individually identified by labels whose list 
is known (sampling frame). 
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Edwards (1998) citing Olsen et al. (1999). As the distinction between 
design-based and model-based approaches is not necessarily well known 
to the target audience, in this section, we start by explaining the fun
damentals about these two paradigms. 

2.1. Design-based estimation 

Consider samples of fixed size n drawn without replacement from a 
finite population of size N; the number of distinct samples (see Hedayat 
and Sinha, 1991, p. 2) that can be formed is the number of combinations 
(

N
n

)

. Even if this number becomes extremely large when N increases, 

the set of all distinct samples S constitutes a finite set of which we can 
— at least in principle — number all the elements in lexicographic order. 
For example, with the very small population U = {1,2, 3} and the 
sample size n = 2, we have S = {s1 = {1,2}, s2 = {1,3}, s3 = {2,3}}. 
Let us denote r(s) the lexicographic rank of a sample s ∈ S , for example, 
in this case, r({1, 3}) = r(s2) = 2. By assigning a selection probability 
p(s) to each sample s ∈ S , we obtain a probability mass function 
(discrete probability distribution). For example, in this case, p(s1) =

1/4, p(s2) = 1/4 and p(s3) = 1/2. The specification of p(s)⩾0 for all s ∈
S defines a (probability) sampling design, with: 

∑

s∈S

p

(

s

)

= 1 (1) 

Designs are implemented by sampling algorithms, whose theory is 
now very advanced (see Tillé, 2006). 

In design-based estimation, the expectation and variance of an esti
mator θ̂ are defined with respect to the discrete probability distribution 
p(s), which gives (for simplicity of notation, in what follows, the variable 
of interest y is implied): 

Ep

(

θ̂

)

=
∑

s∈S

p

(

s

)

θ̂

(

s

)

(2)  

Vp(θ̂) =
∑

s∈S

p(s)
[
θ̂(s) − Ep(θ̂)

]2 (3) 

The use of p as a subscript for mathematical operators (expectation, 
variance, etc.) refers to the sampling design and is intended to avoid 
confusion about the underlying source of stochasticity. Similarly, we 
will use the terms p-expectation, p-variance, etc. 

The probabilities that single units and pairs of units are part of a 
sample (first- and second-order inclusion probabilities), respectively, are 
defined as: 

Fig. 3. Schematic representation of design-based estimation. The total tU is a fixed value that we want to estimate. Sampling the population U by the means of a 

sampling design leads to a sample s (for example, the sample of lexicographic rank r(s) = 147470) among all those that can be formed (here 
(

N
n

)

=

(
42
5

)

=

850668 samples) with a known probability p(s). The estimator t̂U is a function of sample s and sampling design p. 
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πi =
∑

s∋i
p

(

s

)

(4)  

πij =
∑

s∋(i,j)

p

(

s

)

(5) 

Note that in expressions (4) and (5), the symbol “∋” stands for 
“contains” and the sums are therefore on all samples s that contain unit i 
or a pair of units (i, j), respectively. 

Knowledge of inclusion probabilities is sufficient to allow statistical 
estimation of the finite population parameters. In particular, when πi >

0 and πij > 0 for all i, j ∈ U , unbiased estimators for the mean (or total) 
and its sampling variance may be defined without requiring any as
sumptions about the spatial autocorrelation or shape of the statistical 
distribution for the variable of interest, which may be arbitrarily com
plex. 

To summarize (Fig. 3), (i) the quantity of interest is a fixed value (the 
population is fixed); (ii) a probability sampling design assigns a selection 
probability p(s) to each of the samples that can be formed (s ∈ S ); and 
(iii) the estimator of the parameter of interest depends on the inclusion 
probabilities of the units, which in turn depend on the selection prob
abilities of the samples. The design-based approach relies on the 

frequentist interpretation of probability. 

2.2. Model-based prediction 

If we remain in a frequentist framework, then the model-based 
approach considers that the yi (i ∈ U ) are random variables of joint 
distribution ξ. Thus, the finite population under study is viewed itself as 
a random sample drawn from a superpopulation (infinite population) of 
model ξ. It follows that a function θ of yi (i ∈ U ) is a random variable. 
Under a model ξ, the expectation and variance of θ are written as in
tegrals defined over an infinity of realizations, which can be simply 
denoted as: 

Eξ

(

θ
)

=

∫

θ dξ (6)  

Vξ(θ) =
∫
[
θ − Eξ(θ)

]2dξ (7) 

The use of ξ as a subscript for mathematical operators refers to the 
model and is intended to avoid confusion about the underlying source of 
stochasticity. Similarly, we will use the terms ξ-expectation, ξ-variance, 
ξ-covariance, etc. 

In the strict sense, under the model, the value of θ for the finite 

Fig. 4. Schematic representation of model-based prediction. The population U under study is viewed as a realization of an infinite set of populations (a super
population) following a model ξ. The total tU is a random variable whose value is to be predicted. A sample s is drawn from the population U according to an 
ignorable selection process. The predictor ̃tU is a function of sample s and model ξ. 
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population under study is not estimated (it is not a fixed value) but 
predicted (it is a realization of a random variable), using a predictor θ̃. 

In the superpopulation model approach, the population is random 
but the sample s is fixed; in particular, it is not assumed to have been 
selected by a probability sampling design. Nevertheless, the selection 
process of the sample is assumed to be ignorable or made ignorable (see, 
for example, Sugden and Smith, 1984 or Pfeffermann, 1993). The sta
tistical properties of a predictor θ̃ thus depend on only the model ξ. 

To summarize (Fig. 4), (i) the quantity of interest is viewed as a 
realization of a random variable (the population is random); (ii) the 
sample s is fixed; and (iii) the predictor of the quantity of interest de
pends on knowledge of the superpopulation model ξ from which the 
population is viewed as a random sample. 

2.3. Interpreting the superpopulation concept 

The model-based prediction introduces the concept of super
population through the sequence of the three nested sets: 

superpopulation ξ → population U → sample s
(∞) (N) (n) (8) 

The term superpopulation seems to have been coined by Fisher (1932) 
and later introduced by Deming and Stephan (1941) in the field of 
survey sampling, but the idea of a finite population that is itself regarded 
as a random sample from an infinite population seems to have originated 
in the beginning of the 19th century with Laplace’s work (see Pearson, 
1928; Cochran, 1978). 

As a matter of course, the term superpopulation is more widely 
encountered in statistics (especially in survey sampling theory) than in 
ecology (but see Eberhardt and Thomas, 1991 or Aubry and Debouzie, 
2000; Aubry and Debouzie, 2001 for such a use). A different meaning of 
the term superpopulation is also encountered in statistical ecology in the 
field of capture-recapture methods (e.g., Nichols et al., 2005; Royle 
et al., 2014; McCrea and Morgan, 2014), where “a ’superpopulation’ is 
defined as the total number of animals that were alive and available to be 
captured during at least one sampling period of the study and is thus 
composed of the recruits to the population across all sampling periods” (Wen 
et al., 2011). However, it is somewhat unfortunate that the term super
population has been used to define a distinct concept in statistical ecol
ogy in light of its already long history in statistics; nevertheless, the two 
meanings are easily distinguishable according to the context. In this 
article, we clearly refer to the first acception of the term superpopulation. 

In general, statisticians do not dwell on the question of the inter
pretation of the concept of superpopulation, notable exceptions being 
Cassel et al. (1977, pp. 81–82) and Nathan (2011) who enumerate 
several alternative interpretations. With a frequentist definition of 
probability in mind, let us mention two main interpretations: (i) the 
superpopulation is modeled to describe a situation in which the finite 
population may be considered to have been generated by a real-world 
stochastic process (the population is then regarded as having been 
drawn by ’Nature’); and (ii) the superpopulation model is regarded as a 
purely mathematical device, useful in deriving results. 

In the first interpretation, the estimation of the superpopulation 
parameters may be the goal of the study such that the underlying process 
leading to the observed values can be characterized. In this case, the 
survey data are used for analytic purposes. Conversely, for descriptive 
purposes, the survey data are simply used to assess certain characteris
tics defined on a given fixed population. In this case, the estimation of 
superpopulation parameters is merely a technical intermediate step to
ward, for instance, predicting total abundance. Briefly stated, the ana
lytic questions are “why?” and “how?” whereas the descriptive question 
is merely “how many?” (Deming, 1953). 

For model-based prediction, both interpretations (i) and (ii) of the 
concept of superpopulation can be used. If one refers in particular to the 
first interpretation (i.e., a hypothetical data-generating process), model- 

based prediction may be (a) concerned with the here and now of what 
has occurred, focusing on the status of the actual population rather than 
on a superpopulation corresponding to the biological and ecological 
processes involved in its production and (b) intended to make general
izations or predictions beyond the sampling units that comprise the 
finite population that has actually been sampled. To summarize, when 
referring to the superpopulation concept, ecologists must be clear 
regarding whether the population of interest is the (real) finite popu
lation (i.e., a particular realization of the invoked superpopulation 
model), or whether it is the (hypothetical) superpopulation itself. 

In this article, we focus on the spatial finite population at hand, and 
the superpopulation is merely viewed as a mathematical device useful in 
making abundance predictions. 

2.4. Superpopulation model typology 

It is useful to develop a typology of superpopulation models that is 
intelligible to an audience of ecologists, as those proposed by statisti
cians may be too complex (e.g., Cassel et al., 1977, p. 90, Table 4.1). For 
this purpose, we propose a very simple typology that depends on the 
nature of the information that can be taken into account to build a 
superpopulation model. For a univariate situation (i.e., a single variable 
of interest, here the abundance for one species), in a frequentist 
framework, we distinguish essentially three categories of information: 
(i) a possible spatiotemporal autocorrelation (ρ(d, t)) — or only spatial 
ρ(d) or temporal ρ(t); (ii) possible auxiliary variables X in relation — 
linear or nonlinear — to the variable of interest (f(X)+ ε); and (iii) the 
assumption of a statistical distribution (f(y)). By crossing the presence- 
absence of these three types of information, we define eight major types 
of superpopulation models that appear immediately intelligible from an 
operational perspective (Table 1). 

2.5. Comparing the design-based vs. model-based approaches 

Comparing the two approaches for abundance assessment clearly 
makes sense only when the data are gathered from a sample selected by 
a probability sampling design. For a gentle introduction to this issue in 
the field of ecology, we consider simple random sampling without 
replacement (SRSWOR). This without-replacement design is of fixed size 
(the sample size n is predetermined). Moreover, SRSWOR is ignorable 
because of equal inclusion probabilities (self-weighted sampling 
design). It can therefore lead to samples that can be used directly and 
simply in a model-based approach. 

In what follows, we consider a practical situation in which neither 
auxiliary variables nor an exploitable spatial autocorrelation structure 
are available; we therefore consider only superpopulation models of 
Types I and IV (Table 1). 

Table 1 
Typology of superpopulation models according to the nature of the information 
taken into account: spatiotemporal autocorrelation (ρ(d, t)); auxiliary variables 
(f(X)+ ε); statistical distribution (f(y)). In this article, we consider only Types I 
and IV models (grayed rows).  
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3. Count data distribution models 

The general characteristic of count data (y⩾0) is that they may 
exhibit a high proportion of zero values. To take this into account in a 
sufficiently flexible manner, one approach is to use a two-component 
mixture model. There are two possibilities: (i) increasing the probabil
ity of zero counts from a distribution defined for y⩾0 (zero-inflated dis
tributions); and (ii) introducing a dichotomy between y = 0 and y > 0 in 
a mixture model with two separately estimable parts (hurdle-at-zero, 
conditional, two-part, and delta distributions designate the same thing). If 
the second possibility is adopted, then a suitable superpopulation model 
for count data (y⩾0) is written as: 

G(y; p0, θ) =
{

p0 y = 0
p0 + (1 − p0)F(y; θ) y > 0 (9)  

where p0 is the probability of obtaining a zero count and F(y; θ) is a 
cumulative distribution with parameters θ, corresponding to a positive 
distribution, either discrete (e.g., zero-truncated Poisson distribution) or 
continuous (e.g., lognormal distribution). In what follows, as an 
example, we consider the lognormal distribution. 

3.1. Lognormal distribution 

The lognormal distribution is often used to model abundance data (e. 
g., Clark and Bjørnstad, 2004; Dennis et al., 2006). Let z be a random 
variable distributed according to the standard normal distribution (i.e., 
z ∼ Norm(0,1)) of probability density: 

ϕ(z) =
1̅̅
̅̅̅

2π
√ exp

[

−
1
2
z2
]

z ∈ ℝ (10) 

Then, y = exp(μ+σz) follows a lognormal distribution that is 
completely specified by the mean (μ) and variance (σ2) of log- 
transformed abundances. Parameters μ and σ2 are estimated without 
bias from the subset of positive count data (denoted as s+), respectively, 
by yln and s2

ln (Aitchison and Brown, 1969, p. 39): 

yln =
1

n+

∑

i∈s+

lnyi (11)  

s2
ln =

1
n+ − 1

∑

i∈s+

(lnyi − yln)
2 (12)  

with n+ the size of s+. The probability density function of the lognormal 
distribution is written as (Aitchison and Brown, 1969, p. 8, Eq. 2.5; 
Shimizu et al., 1988, p. 2, Eq. 2.1): 

f
(
y; μ, σ2) =

1
yσϕ((lny − μ)/σ )

=
1

yσ
̅̅̅̅̅
2π

√ exp

[

−
1
2

(
lny − μ

σ

)2
]

y ∈ ℝ∗
+

(13)  

The expectation α and variance β2 are given by (Aitchison and Brown, 
1969, p. 8, Eqs. 2.7 and 2.8): 

α = exp
(

μ +
1
2

σ2
)

(14)  

β2 = α2( exp
(
σ2) − 1

)
(15)  

3.2. Delta-lognormal distribution 

The lognormal distribution is no longer appropriate when zero 
counts must be accounted for. Consequently, in this article, we use as a 
superpopulation model the delta-lognormal distribution (Shimizu et al., 
1988), often also called the Δ-distribution (Aitchison and Brown, 1969). 

The delta-lognormal distribution results from a mixture of a Dirac 
mass at 0 with probability p0 and a lognormal distribution with proba
bility (1 − p0), that is (e.g., Dennis et al., 1988, p. 325, Eq. 4.2): 

g
(
y; p0, μ, σ2) = p0 δ

(
y
)
+
(
1 − p0

)
f
(
y; μ, σ2) (16)  

where δ(y) is a Dirac distribution that concentrates a unit mass at 0. By 
applying the calculation rules for the expectation and variance of a 
mixture distribution (see Appendix A.2), expectation κ1 and variance κ2 
(the first two cumulants) of the distribution (16) are written as: 

κ1 = (1 − p0)α (17)  

κ2 =
(
1 − p0

)(
p0 α2 + β2) (18)  

4. Estimation and prediction 

Before introducing the context of prediction that involves both 
superpopulation sampling and finite population sampling, we first recall 
the estimation of the finite population mean and of the superpopulation 
expectation. We also must consider the variance estimation (but we 
exclude the issue of the sampling variance of the variance estimators). 

In the context of a finite population, we can indifferently consider the 
mean yU or the total tU = NyU as parameters of interest. For a super
population (infinite population), the parameter of interest is the 
expectation Eξ(y) = κ1. 

4.1. Finite population parameter estimation 

Let s be a sample drawn from U by an SRSWOR of size n out of N. The 
design-unbiased (or p-unbiased) estimators of yU and S2

U are, respec
tively, ys and S2

s (e.g., Cochran, 1977, pp. 21, 26). The p-variance of the 
mean estimator is written as (e.g., Cochran, 1977, p. 23, Eq. 2.8): 

Vp

(

ys

)

=
(

1 −
n
N

) S2
U

n
(19) 

The total tU is thus estimated by t̂U = Nys (the so-called expansion 
estimator), and its sampling variance is naturally written as Vp (̂tU ) =

N2Vp(ys). These results apply regardless of the statistical distribution of 
y in U . 

4.2. Infinite population parameter estimation 

4.2.1. Unknown shape of the distribution 
Let s be a sample of size n drawn by random sampling from an infinite 

population of unknown shape. The model-unbiased (or ξ-unbiased) 
nonparametric estimators of κ1 and κ2 are ys and S2

s , respectively. The 
ξ-variance of the sample mean is written as (e.g., Kendall, 1945, p. 206, 
Eq. 9.7): 

Vξ

(
ys

)
=

κ2

n
(20)  

4.2.2. Known shape of the distribution 
As mentioned above, as an example, in this article we consider the 

delta-lognormal distribution. The expectation κ1 and variance κ2 of this 
distribution can be estimated by means of uniformly minimum-variance 
unbiased estimators (UMVUEs), that is, unbiased estimators that has 
lower variance than any other unbiased estimators for all possible values 
of the parameters of interest. The UMVUEs of κ1 and κ2 (denoted as κ̂1 
and κ̂2, respectively) were given by Aitchison and Brown (1969, p. 97, 
Eqs. 9.54 and 9.55) and the exact variance Vξ(κ̂1) was provided by 
Shimizu and Iwase (1981, Remark 3.1), Shimizu et al. (1988, p. 50) and 
Smith (1988, Eq. 6). For his part, Pennington (1983, Eq. 4) has provided 
the UMVUE for the variance Vξ(κ̂1). We refer the reader interested in the 
formal and computational details to Aubry (2022). 
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4.3. Prediction of the finite population total 

This section is essentially devoted to demystifying the formulas 
regarding predictors and variances of prediction error, as we surmise 
that the intended audience may be not aware of prediction theory. 
Therefore, the different steps of the reasoning process are provided 
rather than directly providing the final formulas without an under
standable rationale. 

By denoting r = U − s, the total abundance can be written as: 

tU =
∑

i∈U

yi =
∑

i∈s
yi

⏟̅⏞⏞̅⏟
ts

+
∑

i∈r
yi

⏟̅⏞⏞̅⏟
tr

(21)  

that is, the sum of the totals defined over the sample (ts) and the 
remaining part in the population (tr). In the framework of a super
population model, tU , ts and tr are random variables. The prediction 
issue for tU can give rise to predictors of two forms (Särndal and Wright, 
1984; Firth and Bennett, 1998): 

(i) the projective form, which is the sum of the predicted values for the 
whole population, that is: 

t̃
pro
U =

∑

i∈U

ỹi (22)   

(ii) the predictive form, which predicts tr only, that is: 

t
∼ pre

U =
∑

i∈s
yi

⏟̅⏞⏞̅⏟
ts

+
∑

i∈r

y∼i

⏟̅⏞⏞̅⏟

t
∼

r

(23)   

In situations where these two predictors differ, ̃t
pre
U is preferred to ̃t

pro
U 

(Firth and Bennett, 1998). Indeed, when n tends toward N, with the 
predictive form, the predictor tends toward tU , and for n = N (a census 
case), we obtain ̃t

pre
U = tU , a property that makes sense (finite population 

consistency, see Cochran, 1977, Section 2.4, p. 21 or Hankin et al., 2019, 
p. 325). In the case of the projective form, even if we have a census, we 
still have variability in the estimators of the superpopulation parameters 
and this translates into uncertainty in the predicted total. 

Whatever the form of a predictor ̃tU , the variance of the prediction 
error (̃tU − tU ) is written as the variance of the difference of two random 
variables, that is (e.g., Kendall, 1945, p. 226, Eq. 9.60): 

Vξ
(
t̃U − tU

)
= Vξ

(
t̃U

)
+Vξ

(
tU

)
− 2Covξ

(
t̃U , tU

)
(24) 

The covariance Covξ (̃tU , tU ) is positive and tends to 0 when N in
creases to ∞. 

In the absence of auxiliary variables that would be related to the 
variable of interest, the optimal predictor — in the sense of mean 
squared error minimization — can be written as (Chambers and Clark, 
2012, p. 21): 

t
∼*

U =
∑

i∈s
yi + Eξ(tr|{yi, i ∈ s} )

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
conditional ​ expectation

(25)  

that is, the predictor of the total tr is its expectation given the data at 
hand {yi, i ∈ s}. 

In the absence of obvious spatial structure that could be exploited (i. 
e., a trend and autocorrelation), we consider that the random variables 
yi (i = 1,…,N) have the same expectations and variances and are not 
correlated, that is: 

Eξ
(
yi
)
= κ1 (26a)  

Vξ
(
yi
)
= κ2 (26b)  

Covξ
(
yi, yj

)
= 0

(
i ∕= j

)
(26c) 

There is no universally adopted terminology for designing model 
(26) (see Cassel et al., 1977, Table 4.1, p. 90; Bolfarine and Zacks, 1992, 
p. 9; Chambers and Clark, 2012, p. 20), but it may be referred to as a 
mean model (Gregoire, 1998; Hankin et al., 2019, p. 119). 

For model (26), the optimal predictor (25) is written as (Chambers 
and Clark, 2012, p. 21): 

t̃
*
U =

∑

i∈s
yi +

(

N − n

)

Eξ

(

yi

)

(27)  

The empirical predictor (predictive form) is then written as: 

t
∼

U =
∑

i∈s
yi + (N − n)Êξ(yi)

⏟̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅ ⏟

t
∼

r

(28)  

by substituting an estimator for the corresponding parameter (expecta
tion). Predictor (28) is ξ-unbiased; that is, if the model is correct and the 
expectation estimator is unbiased, then Eξ (̃tU − tU ) = 0. The variance of 
the prediction error (̃tU − tU ) is obtained as: 

Vξ
(

t
∼

U − tU

)
= Vξ

(
t
∼

r − tr
)
= Vξ

(
t
∼

r
)
+ Vξ(tr) − 2Covξ

(
t
∼

r , tr
)

⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟
0

(29) 

The ξ-covariance between ̃tr and tr is zero since: (i) ̃tr is a function of 
the set of values in s ({yi, i ∈ s}), not of the set of values in r ({yi, i ∈ r}) 
which we do not know; and (ii) the two sets of values {yi, i ∈ s} and {yi,

i ∈ r} are uncorrelated under the model (see 26c). 

4.3.1. Distribution of unknown shape 
In our typology (Table 1), when the shape of the distribution f(y) is 

not known (or known but not taken into account), model (26) corre
sponds to a Type I model. Then, predictor (28) can be written as: 

t̃U =
∑

i∈s
yi +

(

N − n

)

ys = nys +

(

N − n

)

ys = Nys (30)  

which corresponds to the expansion estimator t̂U in the SRSWOR case 
(Section 4.1), although obtained in a different framework. We can 
therefore designate predictor (30) as an expansion predictor (Bolfarine 
and Zacks, 1992). Note that the projective form is also Nys (predictive- 
projective equivalence; see Firth and Bennett, 1998). From relation (29), 
the prediction error variance of (̃tU − tU ) is obtained as: 

Vξ
(
t̃U − tU

)
= (N − n)2[Vξ

(
ys
)
+ Vξ

(
yr
)]

(31)  

= (N − n)2
(

1
n
+

1
N − n

)

κ2 (32)  

= N2
(

1 −
n
N

) κ2

n
(33)  

a well-known result from Cochran (1939, Eq. 1). For prediction error 
variance (33), a ξ-unbiased estimator is obtained by substituting S2

s for 
κ2, which leads to the same variance estimator as for the expansion 
estimator. The predictor of the mean is ys, and its prediction error 
variance is Vξ(ys − yU ) = (1 − n/N)κ2/n. 

4.3.2. Distribution of known shape 
In our typology (Table 1), when the shape of the distribution f(y) is 

(assumed to be) known, model (26) corresponds to a Type IV model. The 
predictive form is written as: 
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t̃
pre
U =

∑

i∈s
yi +

(

N − n

)

κ̂1 (34)  

which differs from the projective form Nκ̂1, which we will not consider 
further in this article for predicting tU . According to relation (29), the 
prediction error variance (̃t

,pre
U − tU ) is obtained as: 

Vξ
(
t̃

pre
U − tU

)
= (N − n)2[Vξ

(
κ̂1
)
+ Vξ

(
yr
)]

(35)  

= (N − n)
[
(N − n)Vξ(κ̂1) + κ2

]
(36) 

The mean predictor is ̃y
pre
U = N− 1 t̃

pre
U (e.g., Smith, 1990, Eq. 3), and its 

prediction error variance is Vξ(ỹ
pre
U − yU ) = N− 2Vξ (̃t

pre
U − tU ). For pre

diction error variance (36), a ξ-unbiased estimator is obtained by 
substituting estimators V̂ξ(κ̂1) and κ̂2 for Vξ(κ̂1) and κ2, respectively. 

5. Case studies 

Theory matters but what interests the practitioner most is knowing 
whether one should prefer an abundance estimate based on a design or 
on a model. To illustrate this type of questioning in a concrete manner, 
we rely on count data collected on a random sample of spatial sampling 
units that concern wintering populations in France of two wader species: 
(a) northern lapwing (Vanellus vanellus); (b) European golden plover 
(Pluvialis apricaria). With reference to the delta-lognormal distribution 
for prediction using t̃

pre
U (34), we seek to answer the following opera

tional question: in terms of bias and efficiency, how does the model- 
based predictor behave with these data? 

Northern lapwing and European golden plover were counted in six 
regions in northwestern France during the winter of 2004–2005. At this 
time of the year, individuals of these species exhibit gregarious behavior 
and are distributed in open habitats, facilitating their counting. Both 
species frequent more or less the same types of open environments 
(agricultural plains and meadows), enabling a common monitoring. We 
present both species in this study as they were counted on the same 
spatial sample but correspond to different status of abundance. Indeed, 
northern lapwings are more abundant than European golden plovers 
(number of zero counts differs greatly). Notably, France is one of the few 
countries where these two species are hunted. The IUCN status cate
gories are “near threatened” (”vulnerable” on the European scale) and 
“least concern” for northern lapwing and Eurasian golden plover, 
respectively. 

5.1. Datasets 

N = 9312 communes (the commune is the smallest administrative 
unit in France) located in the Bretagne, Pays de la Loire, Basse- 
Normandie, Haute-Normandie, Centre and Poitou–Charentes regions 
(the region is the greater administrative subdivision in France) formed 
the spatial population of sampling units. Among the 786 communes 
selected by SRSWOR, n = 784 communes were surveyed; the nonre
sponse concerning approximately 0.25% of the sample is considered 
ignorable. Approximately 280 observers were mobilized to conduct the 
counts by car, mainly between January 5 and January 12, 2005, with 
instructions to visit each sampled commune to count the birds from the 
car, with binoculars if necessary. In the case of rural communes in 
hedged farmland where most of the surface is likely to host both species, 
it was requested to cover almost all the commune roads. 

At the end of the survey, we obtained two datasets (one for each 
species) with a high proportion of zero counts (the numbers of zero 
counts are n0 = 490 and n0 = 681 for northern lapwing and European 
golden plover, respectively) (see Appendix B). Thus, we estimate the 
probability of zero counts as p̂0 = 0.625 for northern lapwing and p̂0 ≃

0.869 for European golden plover. The skewness of the distribution of 
count data is very high, with γ̂1 ≃ 9.9 and γ̂1 ≃ 17.6 for northern 

lapwing and European golden plover, respectively (see also Fig. 5). The 
counts are not correlated with the surface areas of the communes. 
Moreover, at the spatial scale of communes, the counts do not show any 
spatial autocorrelation structure (unpublished results). 

We computed probability-probability plots (PP-plots) against the 
normal distribution for n+ log-transformed positive count data; after 
sorting the data in ascending order, we plotted points with abscissa 
Φ((yi − yln)/sln) (fitted cumulative probabilities) and ordinate 
pi = (i − 0.375)/(0.25+n+) (empirical cumulative probabilities), for i = 1,
…, n+, with Φ(⋅) as the distribution function of the standard normal 
distribution, approximated numerically as in Abramowitz and Stegun 
(1972, p. 932, Eq. 26.2.17). The plotting positions pi that we used were 
proposed by Blom (1958, p. 145, Eq. 1) for the special case of a normal 
distribution. The obtained PP-plots show that the decision to model the 
positive counts by means of a lognormal distribution is not a priori 
unreasonable (Fig. 6). 

5.2. Estimation and prediction 

We seek to compare design-based estimation in the case of SRSWOR 
and model-based prediction under model (26), either in the absence of 
assumptions about the shape of the distribution (Type I model) or by 
assuming that the empirical distribution is adequately described by a 
delta-lognormal distribution (Type IV model). The estimation under 
SRSWOR is formally identical to the prediction under the Type I model 
(Section 4.3.1). In addition, we again find this formal link in defining the 
efficiency index devoted to comparing the p-variance of the expansion 
estimator on the average under the ξ-model and the ξ-variance of the 
prediction error for ̃t

pre
U : 

Vξ
(

t
∼ pre

U − tU

)

Eξ
[
Vp (̂tU )

] =
Vξ
(

t
∼ pre

U − tU

)

Vξ
(

t
∼

U − tU

) = eff (37)  

since Eξ
[
Vp (̂tU )

]
is identical to (33): 

Eξ
[
Vp (̂tU )

]
= Eξ

[

N2
(

1 −
n
N

) S2
풰

n

]

= N2
(

1 −
n
N

) 1
n
Eξ
(
S2

U

)
(38)  

= N2
(

1 −
n
N

) κ2

n
(39) 

Note that the efficiency is defined here in the same way as that used 
by Aitchison and Brown (1969, p. 99, Eq. 9.62) (see also Aubry, 2022). 

The estimates obtained from the data are reported in Tables (2.a) and 
(2.b) for northern lapwing and European golden plover, respectively. In 
both cases, the value obtained for the predictor (prediction based on the 
Type IV model) is higher than that obtained with the expansion esti
mator/predictor (SRSWOR-based estimation or prediction based on the 
Type I model). The same holds for the estimates of the prediction error 
variance vs. the estimation variance, and for the respective coefficients 
of variation. For these datasets, it is clear that we will not use the results 
obtained in the case of the Type IV model assuming that the counts 
follow a delta-lognormal distribution. However, to document the impact 
of the model deviation on the bias and efficiency of the predictor, we 
must proceed slightly further, relying on a Monte Carlo study. 

5.3. Monte Carlo study 

Recall that in the framework of probability sampling, we denote πi as 
the inclusion probability of a spatial unit i ∈ s, associated with the 
number of individuals yi⩾0. By definition, the sampling weight is wi =

π− 1
i . Considering only the subset s+ of positive counts (for i ∈ s+ we have 

yi > 0), we define the total weight W =
∑

i∈s+wi and Pi = wi/W 
normalized weights in the sense that 

∑
i∈s+Pi = 1. 
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5.3.1. Obtaining a superpopulation by resampling 
To define a ξ-superpopulation corresponding to the observed positive 

values without referring to a parametric model, it is sufficient to 
consider sampling with replacement of yi with probabilities Pi (i ∈ s+). 
The corresponding ξ-superpopulation can then be written as: 

h

(

y;

{(

Pi, yi

)

, i ∈ s+

})

=
∑

i∈s+

Pi δ

(

y − yi

)

(40)  

where δ(y − yi) is a Dirac distribution that concentrates a unit mass at yi. 
This superpopulation is nothing more than a mixture of n+ Dirac dis
tributions that associate a weight Pi to each count yi > 0. 

The sampling design considered in the definition of h (40) is unequal 
probability sampling with replacement. For the implementation of this 
design, the reader is referred to Särndal et al. (1992, p. 91, Section 3.6.3, 
p. 97) or to Aubry (2021, Remark 6). In our case — where the sample of 
spatial units was selected by SRSWOR — the design implemented for 
resampling is just simple random sampling with replacement (SRSWR). 
The ξ-superpopulation thus defined reproduces, on average, the 
observed data; hence, in particular we have Eξ(y) = ys+ (denoted as a) 
and Vξ(y) = S2

s+ (denoted as b2). 

5.3.2. Contamination of the theoretical distribution 
The Monte Carlo study proposed in this article consists of contami

nating the positive values of the delta-lognormal distribution by the 
superpopulation h, with a given contamination rate. The contaminated 

Fig. 5. Empirical cumulative distribution functions (CDFs) for the two datasets. (a) northern lapwing. (b) European golden plover.  

Fig. 6. Probability-probability plots with respect to the normal distribution of n+ log-transformed positive count data. (a) Northern lapwing (n+ = 294, μ̂ ≃ 5.41243,
σ̂ ≃ 1.72896). (b) European golden plover (n+ = 103, μ̂ ≃ 4.70569, σ̂ ≃ 2.11696). Details in the text. 

Table 2 
Estimated mean abundance by commune, based on the expansion estimator 
(N− 1 t̂U ) and on the predictor assuming the delta-lognormal distribution 
(N− 1 t̃

pre
U ).  

(a) Northern lapwing  

Estimate Variance CV (%) 

Estimator 264.51 1036.18 12.17 
Predictor 361.20 3638.07 16.70  

(b) European golden plover  

Estimate Variance CV (%) 

Estimator 113.31 1399.00 33.01 
Predictor 126.54 2271.91 37.67  
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distribution is thus written as a three-part mixing model: 

g’( y; p0,∊, μ, σ2, {(Pi, yi), i ∈ s+ }
)
= p0 δ(y)

+(1 − p0)[∊ h(y; {(Pi, yi), i ∈ s+ } )

+ (1 − ∊) f (y; μ, σ2) ]

(41) 

At first glance, this expression may look complicated but is actually 
simple: p0 is the probability of obtaining a zero count; ∊ is the contam
ination rate of the lognormal distribution f by the superpopulation h 
defined by resampling the positive data; μ and σ2 are the parameters 
specifying the lognormal part of the model; {(Pi, yi), i ∈ s+} is the set of 
pairs with probability Pi for resampling the positive abundance yi. 

By applying the calculation rules for the expectation and variance of 
a mixture distribution (see Appendix A.2), the first two cumulants of 
(41) are written as: 

κ1 = (1 − p0)[∊a + (1 − ∊)α ] (42)  

κ2 = (1 − p0)
{

∊
(
a2 + b2)+ (1 − ∊)

(
α2 + β2) − (1 − p0)[∊ a + (1 − ∊)α ]

2 }

(43) 

For ∊ = 0, we obtain the delta-lognormal distribution and we find 
expressions (17) and (18) as particular instances of (42) and (43), 
respectively. For ∊ = 1, the superpopulation h defined by resampling the 
positive data entirely replaces the lognormal distribution f, and we 
obtain: 

κ1 = (1 − p0)a (44)  

κ2 =
(
1 − p0

)(
p0 a2 + b2) (45) 

Thus, by varying ∊, we can appreciate the impact of the gradual 
replacement of the delta-lognormal distribution f by the super
population h on the statistical performance of the predictor ̃t

pre
U (34). 

5.3.3. Simulation algorithm 
Let K be the number of simulations to be performed (Monte Carlo 

effort) to approximate the quantities of interest by an average of the 
form v(j) = K− 1∑K

k=1v(j)k . The Monte Carlo simulation proceeds as 
follows:  

1. for a given contamination rate ∊  
2. let k←0  
3. increment k←k + 1  
4. generate a fictitious population U of size N according to the 

mixing model (41)  
5. compute and memorize the population total v(0)k ←tU  

6. sample U by SRSWOR to obtain a sample s  
7. compute the UMVUE κ̂1 (see Aubry, 2022)  
8. compute the expansion estimator ̂tU = Nys  

9. compute the predictor ̃t
pre
U according to expression (34)  

10. compute the deviations (errors) e1← t̂U − tU and e2←t̃
pre
U − tU  

11. memorize v(1)k ←e1, v(2)k ←e2, v(3)k ←e2
1 and v(4)k ←e2

2  
12. if k < K, then go to step 3; otherwise, go to the next step  
13. compute Êξ(tU )←v(0), Êξ (̂tU − tU )←v(1) and Êξ (̃t

pre
U − tU )←v(2)

14. compute relative biases B1←Êξ (̂tU − tU )/Êξ(tU ) and 

B2←Êξ

(
t
∼ pre

U − tU

)/
Êξ(tU )

15. compute M̂SEξ (̂tU − tU )←v(3) and M̂SEξ

(
t
∼ pre

U − tU

)
←v(4)

16. compute the relative efficiency E←M̂SEξ (̃t
pre
U − tU )/

M̂SEξ (̂tU − tU )

For this article, we performed the simulations for ∊ = 0.0(0.05)1.0 
with K = 106 simulations for each value of ∊. 

5.3.4. Results 
As expected, the relative bias B1 (defined for the expansion esti

mator) is essentially zero regardless of the value of ∊ (results not shown). 
The relationship between the values of the relative bias B2 and the 
∊-values is fitted by a nonlinear model of the form: 

B2(∊) = exp
(
A ∊ + B ∊C) − 1 (46) 

The relative bias increases approximately linearly with ∊ (Fig. 7.a 
and 8.a), with a much steeper slope for northern lapwing than for Eu
ropean golden plover. We plotted the relative bias thresholds at 5 and 10 
percent, considering that below 5 percent, the relative bias can be 
viewed as small, between 5 and 10 percent it is medium, and above 10 
percent it is of concern. For both species, the results show that the 
relative bias of the predictor assuming the delta-lognormal distribution 
is much too high for ∊ = 1, and it is more than twice as high for northern 
lapwing than it is for European golden plover. 

The relationship between the values of the relative efficiency E and 
the ∊-values is fitted by a nonlinear model of the form: 

E(∊) = exp
(
A ∊ + B∊C) − (1 − D) (47)  

where D = eff is the value of E(∊) for ∊ = 0, exactly computed as: 

D =
n
[(

N − n
)
Vξ
(

κ̂1
)
+ κ2

]

Nκ2
(48) 

We obtain D ≃ 0.4675706 for northern lapwing and D ≃ 0.2538185 
for European golden plover. We plot the efficiency limit at 1, the value 
above which the predictor is less efficient than the expansion estimator/ 
predictor. This threshold is reached for ∊ ≃ 0.50 in the case of northern 
lapwing and for ∊ ≃ 0.90 in the case of European golden plover (Fig. 7.b 
and 8.b). 

5.3.5. A simple predictive check 
Among possible predictive checks and before embarking on the 

simulation described in Section 5.3.3, as illustrated by Gelman et al. 
(2014, pp. 189–190), one should first examine whether the model is able 
to correctly predict the sample total. This check is simply a matter of 
predicting the sample total using the projective form, that is: 

t̃
pro
s =

∑

i∈s
ỹi (49) 

As illustrated by Fig. 9 and Fig. 10, for ∊ = 1, by definition of the 
superpopulation model (41), we have the ability to predict the sample 
total (that is, ts = 207379 for northern lapwing and ts = 88834 for Eu
ropean golden plover), which corresponds to the mean of the predictor 
distribution. 

For ∊ tending to 0 — that is, when tending to the pure delta- 
lognormal model — the ability to predict the sample total decreases 
gradually, with the behavior depending on the species (Fig. 10). 

For ∊ = 0 (delta-lognormal model) and 106 simulated samples, for 
northern lapwing, when ts = 207379, the median is 281456, the 90% 
prediction interval is [206249, 419010], and the largest prediction is 
5347363, indicating strong overestimation. For European golden plo
ver, when ts = 88834, the median is 87804, the 90% prediction interval 
is [44917,221691] and the largest prediction is 15479805. Comparison 
of the two species shows that while for northern lapwing, the distribu
tion is globally shifted to the right (Fig. 10.a, for ∊ = 0.0), for European 
golden plover, the median is very close to the sample total, but the 
spread to the right is excessive, with a very long right tail of the simu
lated predictor distribution (Fig. 10.b, for ∊ = 0.0). 

6. Discussion 

The issue of abundance estimation in the case of a finite population 
of spatial sampling units falls under the theory of probability sampling. 
Despite regular calls to rely on this theory in the field of ecology (Albert 
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et al., 2010; Smith et al., 2017; Aubry et al., 2020), it remains relatively 
unknown because it is not yet sufficiently taught (Hankin et al., 2019, 
Preface; Webb, 2021, p. 817) and is rarely present in the literature 
devoted to animal abundance assessment (Borchers et al., 2002, p. 48). 
Furthermore, as noted by Hahn (1969); Whitmore (1986) and Lin and 
Liao (2008) (for instance), the concept of prediction is also not often 
taught in college courses and rarely present in general books on applied 
statistics, apart from a presentation in the context of simple linear 
regression (e.g., Janke and Tinsley, 2005). It follows that the comparison 
between the estimation and prediction of abundance remains largely to 
be investigated in our field. 

As a first contribution, we were interested here in the potential gain 
in precision that can be achieved by using a distribution model for count 
data compared to using the sample mean. As an example, we examined 
the use of the delta-lognormal distribution. 

6.1. The use of the delta-lognormal distribution 

Pennington (1983) introduced the use of the delta-lognormal dis
tribution in marine biology to estimate mean abundance more effi
ciently than can be achieved with the sample mean in the case of highly 
skewed distributions. The article by Pennington (1983) is widely cited in 
the literature in this field, which may give the impression that this 
approach is restricted to marine organisms (e.g., Dennis et al., 1988, 
Section 4.2). The lack of widespread diffusion for a method outside the 
field in which it was introduced is more a matter of epistemology than 
related to the nature of the organism populations that one seeks to 
count. The use of a given distribution can be justified in three main 
ways: (i) it is easy to manipulate mathematically and/or computation
ally; (ii) it corresponds to a data generating process that we know is 
actually at work (for the lognormal distribution, see, for instance, Koch, 
1966; Koch, 1969; Parkin et al., 1992, pp. 198–200; Hilborn and 
Mangel, 1997, pp. 73–76 and Shimizu et al., 1988, Section 3); and (iii) it 
provides an adequate summary of the data at hand. We have implicitly 

Fig. 7. For northern lapwing, Monte Carlo simulation results for the three-part mixing model. (a) Relative bias, modeled as 
exp
(
0.26426 × ∊ + 0.05072 × ∊2.27724) − 1. (b) Relative efficiency, modeled as exp

(
0.8654 × ∊ + 1.6268 × ∊3.8535) − (1 − 0.4675706). Details in the text. 

Fig. 8. For European golden plover, Monte Carlo simulation results for the three-part mixing model. (a) Relative bias, modeled as 
exp
(
0.12986 × ∊ + 0.01649 × ∊1.96212) − 1. (b) Relative efficiency, modeled as exp

(
0.2717 × ∊ + 0.6614 × ∊6.7483) − (1 − 0.2538185). Details in the text. 
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considered the third perspective in this article. In doing so, the use of a 
continuous distribution in the context of discrete data such as counts can 
only be justified because it provides an adequate approximation of the 
empirical distribution of the data, as explained, for example, by Myers 
and Pepin (1990). This is the case when counts can take many different 
values within a wide range, and one is not interested in the probability 
mass of each of them. Under these conditions, it is possible to use this 
distribution for any type of organisms, as long as it approximates the 
distribution of the observed data. Thus, in this article, it was a priori 
reasonable to use the delta-lognormal distribution in the case of counts 
for the two wader species (Section 5.1). 

6.2. The infinite or finite nature of the sampled population 

The population that can be sampled by controlling for inclusion 
probabilities is the population of spatial units (the statistical population 
of interest). Beyond the nature of the distribution used for modeling the 
counts, there is an issue related to the finite or infinite nature of the 
statistical population of interest. If we can neglect the fact that the 
population is finite, then the aims of population mean prediction and 
superpopulation expectation estimation align. In general, when the 
spatial sampling fraction is small compared to 1, it is implicitly assumed 
that the population can be considered infinite (Myers and Pepin, 1990). 

To the best of our knowledge, the example chosen for this article has 
rarely been addressed in the context of a spatial population whose finite 
character could not be ignored (however, see Smith, 1990). 

If the data distribution conforms to a delta-lognormal distribution, 
using UMVUE κ̂1 for estimation (superpopulation case) or for building a 
predictor (finite population case) results in a substantive precision gain 
as σ2 increases. As documented by Aubry (2022), the effect of the finite 
nature of the sampled population essentially translates into a decrease in 
the precision gain and a modification of the speed of convergence to its 
asymptotic value. These theoretical results demonstrate the interest in 
relying on the UMVU predictor if the data distribution strictly conforms 
to a delta-lognormal distribution. Of course, in practice, the empirical 
distribution of the data deviates from a pure delta-lognormal distribu
tion, which entails concerns about the robustness of the prediction based 
on this superpopulation model. 

6.3. A matter of robustness 

In fields other than ecology, the lack of robustness that could arise 
from the use of the lognormal distribution when the empirical distri
bution deviates from the theoretical model have been reported for 
several decades (e.g., Link and Koch, 1975). For the prediction of 
abundance, the use of the delta-lognormal distribution thus also 

Fig. 9. Empirical distribution of the predicted sample total for ∊ = 1 and 106 simulations (black line: median; red line: mean). (a) Northern lapwing. (b) European 
golden plover. 

Fig. 10. Box-plot of the predicted sample total as a function of the contamination rate ∊ = 0(0.2)1.0 for 104 simulations (dots: 5th/95th percentiles; black line: 
median; red line: mean). (a) Northern lapwing. (b) European golden plover. 
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legitimately raises concerns about the robustness both of the unbiased
ness and efficiency of the predictor when the empirical distribution 
deviates from the model. 

At least since Tukey and Olkin (1960), this type of question has been 
studied by referring to contamination of the assumed model by another 
distribution. This is formalized as a mixture of distributions with a 
contamination rate ∊ that can be varied. This is how Myers and Pepin 
(1990) proceed, considering as contaminating distributions the gamma 
distribution, the Weibull distribution with two parameters and the 
transformation of the normal distribution given by Johnson and Kotz 
(1970, p. 268, Eq. 50). The use of arbitrary distributions or under con
ditions that are not necessarily realistic can, quite legitimately, be crit
icized (Pennington, 1991; Pennington, 1996; Syrjala, 2000). To avoid 
this pitfall, in this article, we studied the effect of contamination in the 
context of the actual datasets considered. We have indeed proposed that 
the contaminating superpopulation be defined directly from the data, 
without reference to a parametric model of a distribution (Section 
5.3.1). Thus, we can progressively move from the assumed model to a 
situation corresponding to the data at hand. To our knowledge, such an 
approach is original. It provides a general way of answering questions 
asked in the context of actual datasets, which is immediately meaningful 
to the target audience. By proceeding this way, in the case of our 
datasets on the numbers of northern lapwings and European golden 
plovers counted in a portion of French territory during the winter of 
2004–2005, we showed that the predictor assuming the delta-lognormal 
distribution presented significant bias and lower efficiency than the 
estimator/predictor by expansion and that it should therefore not be 
used in either of these two cases (Section 5.3.4). 

The conclusion reached for the two examples discussed in this article 
is consistent with those of Myers and Pepin (1990), Myers and Pepin 
(1991), Syrjala (2000) and Christman (2019, p. 45) and conflicts with 
Pennington and Stromme (1998), who claim that Pennington’s method 
(Pennington, 1983) is robust to departures from lognormality. However, 
our conclusion about the case studies does not mean that the use of the 
delta-lognormal distribution should be rejected in any situation. The 
problem is that in practice, we need to know whether the use of the 
delta-lognormal distribution is justified, in the sense that a gain in 
precision is obtained while maintaining a low bias. As a matter of fact, 
the use of statistical tests is not very relevant for answering this question. 

6.4. Goodness-of-fit is not sufficient 

Normality tests (Shapiro–Wilk, Jarque–Bera, Anderson–Darling, 
Cramér-von Mises, Lilliefors) applied to log-transformed positive counts 
of northern lapwings (n+ = 294) all lead to rejection of the null hy
pothesis (resp. p ≃ 0.0002, p < 0.0001, p ≃ 0.0008, p ≃ 0.0037, 
p ≃ 0.0099), a result consistent with our findings, which show how 
catastrophic the use of the delta-lognormal distribution is. However, the 
results are also not favorable for European golden plover (n+ = 103), 
yet none of the tests indicate rejection of the null hypothesis (resp. 
p ≃ 0.68, p ≃ 0.95, p ≃ 0.52, p ≃ 0.39, p ≃ 0.47). As correctly reported 
by Syrjala (2000) “Failure to reject a goodness-of-fit test is not sufficient to 
ensure that the data are adequately close to a lognormal distribution to obtain 
reasonably unbiased estimates”. Thus, testing the distribution of positive 
data, as suggested by Trenkel and Rochet (2003) or Greenstreet et al. 
(2010), is not sufficient to answer the genuine question. Actually, the 
question we are concerned with is not whether the data truly follow a 
delta-lognormal distribution (or some other distribution), which we 
know to be false without having to conduct a statistical test (Chambers 
et al., 1983, p. 192), but rather how to decide that the empirical data 
distribution is sufficiently close to a delta-lognormal distribution — in a 
way to be agreed upon by statisticians — to warrant use in a prediction 
context. Hence, as written by Gelman et al. (2014, p. 190) “the problem 
[⋯] is not an inability of the models to fit the data, but an inherent inability of 
the data to distinguish between alternative models that have different impli
cations for [prediction] of the population total [⋯]”. 

One approach would be to use an adequate measure of dissimilarity 
between the empirical and theoretical distributions (distance or diver
gence, for a review see Cha, 2007; Basseville, 2013) and to know beyond 
which value of this dissimilarity one should not use the delta-lognormal 
distribution in the context of prediction; however, choosing (or 
designing) a dissimilarity measure that accounts for all aspects of the 
problem is anything but obvious. Moreover, this question goes beyond 
the specific case of the delta-lognormal distribution, which implies that 
one should be able to answer the question correctly for any distribution, 
which again seems to be a very difficult (or even impossible) goal to 
achieve. 

As suggested by Zipkin et al. (2014), beyond goodness-of-fit assess
ment, a Monte Carlo simulation study can help in selecting a suitable 
distribution. The Monte Carlo simulation described in Section (5.3) 
answers the question, while being general in principle. The use of 
contamination by a superpopulation directly defined from the data at 
hand goes beyond the scope of this article and can be used to investigate 
the robustness of any method that assumes a parametric distribution 
model, including delta-generalized linear models (delta-GLMs) 
(Stefánsson, 1996; Fletcher et al., 2005) and delta-generalized additive 
models (delta-GAMs) (Li et al., 2011; Berg et al., 2014; Rubec et al., 
2016) (Type VII models, Table 1) or geostatistical delta-generalized 
linear mixed models (delta-GLMMs) (Thorson et al., 2015) (Type VIII 
models, Table 1). 

6.5. Choosing the type of superpopulation model 

In the absence of auxiliary variables and spatial (or temporal or 
spatiotemporal) autocorrelation, we either ignore the question of the 
shape of the distribution (Type I model), in which case — if sampling is 
ignorable — the prediction gives the same result as the SRSWOR-based 
estimate, or we take the shape of the distribution into account (Type IV 
model). The main question then is whether this latter choice is accept
able both in terms of actual bias and efficiency. Notably, in the field of 
parameter estimation from a finite population, to our knowledge, survey 
statisticians do not venture to make such a strong distributional 
assumption, so Type IV models are rarely used (Ståhl, 2016). More often 
than not, the assumed model is too restrictive to describe the dataset, 
which leads to severe biases (Chen et al., 2004). The two examples 
documented in this article are good illustrations of this point (Section 5). 

Faced with the difficulties posed by predictions based on a Type IV 
model, at least two nonexclusive attitudes are possible: (a) assess the 
robustness of the predictions (bias, efficiency) for the chosen distribu
tion, or (b) seek an approach that is robust to model departure. In regard 
to using a Type IV model with a given distribution model, we advocate 
relying on Monte Carlo simulation predictive checks such as those 
described in Section 5.3. 

7. Perspectives 

7.1. Tackling the robustness issue 

The use of a distribution alone (Type IV model) raises several related 
questions that deserve further consideration. (i) With which distribution 
(s) can the predictions prove sufficiently robust to be useful in practice? 
(ii) For a given distribution, is there a difference in robustness between 
using UMVUE (if available) and the maximum likelihood estimator 
(MLE)? (iii) How can empirical distributions that often have extreme 
values be fit? More generally, selecting a model that assumes a statistical 
distribution (Type IV, VI, VII or VIII models, Table 1) remains a chal
lenge because of the influential data in the right tail of the distribution 
(Favre-Martinoz et al., 2021). Again quoting Gelman et al. (2014, p. 
190), “In order to [predict] the total (or the mean), not only do we need a 
model that reasonably fits the observed data, but we also need a model that 
provides realistic extrapolations beyond the region of the data. [Predictions] 
of [the total] depend strongly on the upper extreme of the distribution [⋯]”. 
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The question of influential values also concerns estimation based on 
a sampling design (e.g., Hulliger, 1995; Beaumont et al., 2013). How
ever, questions (i), (ii) and (iii) are not relevant in a design-based 
framework when only the total (or mean) and the sampling variance 
are to be estimated. From this perspective, design-based estimation has a 
decisive advantage over model-based prediction in terms of objectivity, 
both in terms of bias and variance. It is for this reason that we also find in 
the literature the terminology opposing the model-free (or assumption- 
free) nature of the design-based approach to the model-dependent nature 
of the superpopulation-based approach (see Hansen et al., 1983; 
Särndal, 1985 and references therein). When coping with model-based 
prediction, it is crucial to acknowledge that “If no estimate is made of 
the [actual] bias in the model-based [predictor], only partial information is 
available on the [predictor]’s mean squared error. [⋯] In consequence the 
[predictor] suffers the serious limitation of lacking a true measure of its 
precision. There is the danger that the model-based standard error will be 
interpreted as an overall measure of precision, a procedure which may 
attribute to the [predictor] far greater precision than is appropriate.” 
(Kalton, 1983, p. 180). 

7.2. Comparing design-based vs. model-based inferences 

We have considered thus far only the estimation/prediction of the 
parameter of interest (the mean or total) and an intermediate step, that 
is, the variance estimation for the estimation/prediction error, but to 
make an inference, it is necessary to consider interval estimation by 
means of a confidence interval (design-based approach) or a prediction 
interval (superpopulation model-based approach). The design-based 
approach retains its model-free nature in regard to estimating the 
sampling variance, but in the strict sense, it loses this nature in terms of 
obtaining confidence intervals, an aspect aptly noted by Borchers et al. 
(2002, p. 49). A common misconception is to think that the design-based 
framework leads to unbiased confidence intervals (e.g., Albert et al., 
2010, p. 1029; McGarvey et al., 2016, p. 244). Except for a possible 
miswording from the authors, they refer to (1 − α) confidence intervals 
for which the probability of covering false values of the parameter of 
interest is less than or equal to (1 − α) (Graybill, 1976, pp. 87–88); to our 
knowledge, there is no such guarantee under the design-based approach. 
Actually, what interests the practitioner most is that the actual coverage 
probability should be very close to its nominal level and that noncov
erage probabilities on both sides of the interval are well balanced. 
Regarding design-based confidence intervals, for statistical/mathemat
ical fundamentals, we refer the reader, for instance, to Bellhouse (2001); 
Prášková and Sen (2009); Knottnerus (2009). Let us simply note infor
mally that (i) one has to adopt an adequate asymptotic framework for 
sampling without replacement of finite populations, which leads to a 
specific version of the central limit theorem (CLT); (ii) for a particular 
statistic (or family of statistics) — for example, the expansion estimator 
— asymptotic properties depend on the design; and (iii) properties at 
finite distance may be very different from asymptotic properties (slow 
convergence) when the shape of the statistical distribution of the vari
able of interest departs substantially from symmetry. As one can ima
gine, the subject is of a rather complex theoretical nature. On a practical 
level, in the field considered in this article, using the normal distribution 
does not necessarily lead to confidence intervals with right and left 
noncoverage probabilities close to their prescribed nominal levels (α/2); 
the required confidence interval must be asymmetric, and this asym
metry may not be negligible. This issue requires a thorough examination 
that could not be conducted within the scope of this article and will be 
addressed on other occasions. 

We consider that there is a need to first document the issues 
regarding the computation of accurate confidence and prediction in
tervals before being able to conduct a proper and fair comparison of 
design-based and model-based inferences. 

7.3. Taking into account imperfect detection 

We have not addressed the issue of imperfect detection, which either 
implicitly assumes that there is no observational error — in the sense of 
a discrepancy between true and observed abundance — which is not 
realistic, or considers that a relative abundance (abundance index) 
rather than an absolute abundance is estimated. When addressing the 
consideration of observational error in addition to sampling error — 
sampling error exists whether the approach is design-based or model- 
based — it is possible to treat both at the same time within the 
formalism of each approach. For example, we can generalize the esti
mator by expansion to take into account estimated detection probabil
ities (e.g., Steinhorst and Samuel, 1989; Thompson and Seber, 1994). 
However, it is essential to understand that the use of the (probability) 
sampling theory formalism when the sample has not actually been 
selected by a design is not, in the strict sense, a design-based approach. 
In other words, it is actually a probability modeling of the observation 
process, which is combined with the design-based approach within the 
same formalism. At this stage, it is worth recalling that a formula is not 
sufficient for full understanding of the underlying conceptual frame
work, as illustrated by the case of the expansion estimator/predictor 
coincidence. In this regard, this sort of formal coincidence often occa
sions considerable confusion (Brewer et al., 2009, p. 13). 

As a matter of fact, the observation error cannot be taken into ac
count in a purely design-based framework if we do not control the 
sampling of the individuals counted (Borchers et al., 2002, p. 48). This 
does not necessarily require being able to list them but at least being able 
to observe them with exactly known probabilities. In contrast, both 
types of errors can be taken into account in a purely model-based 
framework. It is also possible using a hybrid design-model-based 
approach, for instance, when estimating an estimator’s variance that 
takes into account both sampling and observation errors (e.g., Aubry 
et al., 2012). 

7.4. The need for further studies 

In absolute terms, the model-based approach encompasses more than 
just the superpopulation approach in the frequentist sense. Indeed, in 
this article, we have considered a global frequentist framework, while a 
Bayesian approach is of course also possible (e.g., Ghosh and Meeden, 
1997; Fieberg et al., 2013; Mendoza et al., 2021; Gelman et al., 2014, 
Section 8.3). 

Contending with the fundamental topic addressed in this article in
volves being able to answer a sequence of questions. (i) Is the type of 
approach frequentist or not? (ii) In the case of a frequentist approach, is 
it dependent or not on a model? (iii) In the case of an approach that 
depends on a model, what type of model should be used? (iv) For a well- 
identified model type, what specification should be adopted? and so on. 
The subject is therefore extremely rich and impossible to tackle 
adequately in just a few pages (Hankin et al., 2019, p. 3). In this respect, 
the section by Borchers et al. (2002, Section 3.2) devoted to the design- 
based and model-based comparison, although welcome, is insufficient to 
do justice to the subject. 

There are many possibilities of hybridization to various degrees be
tween the use of probability sampling and that of models, whether at the 
design or estimation stage (e.g., Kalton, 1983; Särndal et al., 1992; Tillé, 
2020, Chapter 13), and the future undoubtedly lies in the intelligent use 
of the two frameworks, rather than in a dogmatic confrontation, such as 
may have occurred in the past among statisticians (Iachan, 1984; Little, 
2004; Sterba, 2009). From an operational perspective it is at least what 
seems most desirable in ecology; as written by Williams and Brown 
(2019), “ecologists must understand the strengths and limitations of each 
approach in order to tailor designs and analyses to specific questions and 
produce unbiased inferences from survey data”. In the context of abun
dance estimation, to meet this salutary injunction, the use of a design- 
and/or model-based approach should be further documented by 
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repeating and extending the kind of investigations conducted in this 
article with other types of superpopulation models (Table 1), other 
datasets, and other contexts (e.g., with small populations of spatial 
units). 

We have considered a situation in which there is no exploitable 
autocorrelation nor auxiliary variables. In this default situation, the 
choice of a probability sampling design without replacement naturally 
leads to the SRSWOR rather than to a more complex design that would 
require more information. However, the comparison between design- 
based estimation and model-based prediction should also be made in 
situations involving more complex sampling designs (stratified, unequal 
probability, multistage, multiphase, balanced, etc.). 

As one can imagine, the topic addressed in this article is very vast. It 
raises fundamental aspects that need to be properly discussed at a suf
ficient level of detail. The result should be operational guidance for 
ecologists and population biologists whose primary goal is to obtain 
abundance estimates they can trust. We hope that by providing such 
syntheses, more scientists and/or managers will be motivated to think 
more carefully about sampling design and ways to assess biological 

population size. 
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Appendix A. Notation conventions 

A.1. Random variables 

Random variables are typically written in upper case, whereas their realizations are written in lower case (e.g., Edwards and Auger-Méthé, 2019); 
this causes difficulties in the context of this article and represents an obstacle to the expression. Another possibility is to use the so-called Dutch 
notation, which consists in underlining symbols for the random counterparts of fixed quantities (Hemelrijk, 1966). Although this convention for 
distinguishing between fixed and random quantities is more generally applicable than the previous one, it has the disadvantage of making the notation 
considerably more cumbersome. We choose to follow Chambers and Clark (2012, p. 7), who do not distinguish random variables from their re
alizations using notation but simply refer to the context. 

A.2. Cumulants, moments and skewness 

We note the mean of y on a finite set A: 

yA =
1
|A|

∑

i∈A
yi =

1
|A|

tA (A.1)  

where |A| is the cardinality of A and tA is the total of y on A. In the context of finite populations, the mean population yU is the first cumulant. We note 
the variance of y on A: 

S2
A =

1
|A| − 1

∑

i∈A
(yi − yA)

2 (A.2) 

With this notation, the population variance S2
U (second cumulant) has N − 1 as a denominator (Thompson, 1997, p. 27, Eq. 2.60) and follows the 

convention in use in survey sampling theory (see Cochran, 1977, p. 23). It also makes sense in that the population variance is then an unbiased 
estimator of the superpopulation variance from which the population is drawn at random (O’Neill, 2014, p. 283). 

At the level of an infinite population of model ξ, κr is the cumulant of order r (e.g., Kendall, 1945). The expectation and variance in the ξ-model are 
the first two cumulants and are thus denoted as Eξ(y) = κ1 and Vξ(y) = κ2. The central moment of order r is written as: 

μr = Eξ[(y − κ1)
r
] (A.3) 

In particular, we have μ2 = κ2 and μ3 = κ3. Even if it is not necessarily the best possible definition, in this article, skewness is classically defined as: 

γ1 = Eξ

[(
y − κ1

κ1/2
2

)3 ]

=
κ3

κ3/2
2 (A.4) 

Consider a mixture of n random variables yi with normalized weights wi (in the sense that 
∑

iwi = 1) and expectations μi. By linearity of the 
expectation operator, for the resulting random variable y, we obtain: 

Eξ[y] = μ =
∑n

i=1
wi μi (A.5) 
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The central moment of order r can be written as: 

Eξ[(y − μ)r
] =

∑n

i=1
wi

∑r

k=0

(
r
k

)

(μi − μ)r− kEξ

[
(yi − μi)

k
]

(A.6)  

From (A.6), for r = 2, we obtain the variance as: 

Eξ
[
(y − μ)2]

= σ2 =
∑n

i=1
wi

(

μ2
i + σ2

i

)

− μ2 (A.7)  

Appendix B. Supplementary data 

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ecolind.2022.109394. 
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